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I. Phys.: Condens. Matter 5 (1993) 9105-9120. Printed in h e  UK 

Calculation of phase diagrams of ternary systems with 
cluster-variation-method entropy 

G Rubm and A Finel 
LaboraIoire de Physique des Solides. Office National d’Etudes et de Recherches Aerospatiales, 
BP 72 92322 Chatillon Wex, Frame 

Received 29 Mareh 1993. in final form 16 August 1993 

Abstract. Phase diagram calculations (isothermal sections) of t h e  ternary alloys (Ti-AI- 
MO. Ti-AI-Nb and Ti-ACW) are performed fmm a knowledge of experimental binary phase 
diagrams. The CPAaPM Wry has been used to write the total free energy within lhe 
approximation of the CVM for the enuopy. The parameters used to calculate the total free 
energy have teen obtained by fining Lhe binary phase diagrams. 

1. Introduction 

During the last two decades, many computations of phase diagrams have been made. Most 
of them make use of the regular or subregular models. These methods have been developed 
by Kaufman and the Calphad group during the 1970s [I-31. Murray [4] has recently 
reviewed many of these calculations on titanium-based alloys. In other contributions, the 
so-called Bragg-Williams approximation has also been used. 

These approaches present some conceptual difficulties. In particular, they do not 
consider the short-range order (SRO) in the configurational entropy. However, we know 
that neglect of SRO in the entropy may be a very crude approximation. As an example, the 
Bragg-Williams approximation, when applied to the F c c  lattice with ordering interactions, 
leads to a phase diagram in complete disagreement with Monte Carlo results which, in 
principle, are exact 151. 

For this reason, the cluster variation method (CVM) [6], which treats the SRO in the 
entropy explicitly, has become very important nowadays for the purpose of computing 
phase diagrams. 

From another point of view, modem calculations of the electronic structure of alloys 
have permitted one to evaluate the total energy of formation by means of microscopic 
quantum-mechanical theories. For example, the so-called coherent potential approximation 
(CPAbgeneralized perturbation method (GPM) theory [7,8] suggests that this total energy may 
be conveniently written as the sum of the random energy (the CPA energy) plus an ordering 
energy contribution expressed in tema of effective pair interactions. The parameters of 
the CPA energy and the effective pair interactions characterize the energy of formation in a 
given configuration. As these calculations can be made for many structures, we may use 
this model even if structural transitions (from FCC to BCC, for example) are present. This 
quantum-mechanical approach provides explicit values for the effective pair interactions and 
for the disordering energy parameters. Yet, this treatment may lead to poor estimates for 
the enthalpies of formation. Hence, following an approach developed in [9-111, we have 
chosen to obtain all these parameters by fitting the binary phase diagrams. 
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It is also possible to generalize such a model to temary alloys. If we make the 
assumption-which is certainly very rough-that the binary parameters are not changed 
with the adjunction of a third element, the temary parameters will be easiIy expressed in 
terms of binary parameters. Consequently, following this theoretical background already 
used in [ 12-15], we have calculated isotherm phase diagrams of three temary alloys, starting 
from the fits of binary phase diagrams. 

We have realized these calculations on the BCC structure, at 1273 K. This type of 
calculation could be really useful in the near future for metallurgical research, particularly 
in the quest for an M+B2 field to create a y-y' superalloy-type microstructure 1161. 

2. Binary phenomenological model 

We shall consider here only the BCC and HCP structures. For an alloy A-B, the total free 
energy of a phase q5 in a structure I can be written, by the use of the CPA-GPM theory [%I I], 
as 

FL and FL are the free energies of the pure A and the pure B elements respectively, in the 
structure I. (AH:,,) is the random energy, i.e. the disordering energy analogous to the CPA 
energy. (0 stands for the thermodynamic average.) We can write 

(AH&) = CACBP(CA) (2) 

where P is a polynomial in CA, for instance 

P ( C A )  = 0 0  + alcA + aZ(c.4)' + a3(cA)3. 

(AH$) is the ordering energy: 

This ordering energy should also contain, as in any perturbative expansion, triplet 
interactions, quadruplet interactions, etc ( p i  is an occupation number which takes the value 
1 if the site n is occupied by an atom of type i and 0 otherwise; c' = E, p i / N ,  where 
N is the total number of sites). Here, we restrict the summation in the ordering energy to 
the first and second neighbours pairs. As we can see, (AH!:) depends on the nature of 
the phase q5 by the product (p .pm}  and on the structure I by the pair interactions. In tum, 
(AH&) depends only on the structure I by the parameters of the polynomial. 

AS@.' is the configurational entropy that we treat in the CVM approximation. The reader 
can refer to standard accounts of the method 15.8.171. Briefly, we just mention that this 
method consists in factorizing the total probability on partial probabilities, related to finite 
clusters of the underlying lattice. The CVM approach is therefore a mean-field method that 
goes beyond the Bragg-Williams and the Bethe approximations. The simplest and currently 
selected cluster is the tetrahedron: it is regular on the FCC lattice (or the HCP lattice), and 
irregular on the BCC lattice. It represents the degree of the CVM approximation. 
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In OUT study, we have not taken into account the vibrational entropy. Its effects may be 
taken into account through temperature-dependent parameters that could mask the effects 
of the configurational parameters. 

In our calculation, we can also take into account the liquid phase and complex ordered 
phases. Following Kaufman er af we ma t  the liquid phase with a regular model, i.e. we 
Write 

F " ~ = C ~ F ~ + C ~ F ~ + A E ~ ~ ~ - T S  (4) 

where A& is the excess energy with respect to the ideal model and S is the entropy of 
mixing: 

A E : ~  = CACBPCCA) 

s = -k(CA InCA + CB I l lCB) .  

We treat complex ordered phases as stoichiometric compounds; that is, we write 

F' = CAF: + cg F: +a + bT (3 

where CY represents the underlying lattice of the complex ordered phase and where a and b 
are constant parameters that we have to evaluate. 

3. Ternary phenomenological model 

We extend the binary model to ternary alloys. For an alloy A-B-C, the total free energy 
of a phase q5 in a structure I is written as follows: 

= C ~ F ~  + cB$ + c~F," + ( A H ~ ~ J  + (AH!$ - T A S ~ ,  (6) 

where F A ,  4 4  FB and F, 4 are the free energies of the pure A, B and C elements, respectively, 

and (AH,: )  is the ordering term for a temary system. 
We can easily write 

that generalizes the previous expression. 
is treated in the CVM framework. The CVM 

approximation may be readily generalized to temary or multi-component systems; the only 
difference is that we have two independent point probabilities per site ( N  - 1 for an alloy 
of N elements) [18]. 

In tum, we can make different assumptions for (AH$.  The most natural assumption 
consists in simply writing it as the sum of the three disordering energies, related to the three 
binary alloys. As noted above, if we suppose as is usually done (see, e.g., [12-15]), that 
the adjunction of a third element does not disturb the values of the binary parameters, all 
the parameters of the ternary alloy are known. 

The configurational entropy 
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4. Determination of the binary parameters 

How can we fix the binary parameters? As reported above, we must fit them on the ground 
of experimental data The principal difficulties of such an approach is that, in most phase 
diagrams, order-disorder transitions do not exist. Hence, there is no hope of determining 
the pair interactions easily. 

For a given temperature, a two-phase equilibrium is governed by two equations: 

If we know the parameters of the model, these equations lead to c;" and c y ,  the equilibrium 
concentrations. Inversely, we may use them to evaluate two parameters of the model, starting 
from knowledge of c;'" and CF. However, we cannot use this procedure for the ordering 
energy parameters because we did not know the explicit form of the equilibrium ordering 
energy (its value is obtained numerically, after minimization). Consequently, using this 
method, only the parameters of the disordering energy may be evaluated. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 

Figure 1. The CVM calculation on h e  FCC laaice with 
first-neighbow interactions. 

Figure2 The same CVMcalculation with theadjunction 
of the disordering energy. 

Suppose, for example, that the parameters of the ordering and disordering energies of 
a first phase are known, and that only the pair interactions of the second phase are known. 
If we note that 

(AH~,(c)) = ~ ( 1 -  C)(UO + ~ I c )  

and 
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we have the explicit relations 

a ~ ~ ( ~ ; ~ ~ ) / a c ~  = aF;(cF)/ac2 + a(AH;,(c;qu))/acz = I.L 

F B ( c ~ )  - I.Lc;~" = F;(c?) + (AH.,2(~;")) -p?. 

It is easy to invert such a system. We find a0 and a,. the disordering parameters, for one 
temperature T .  However, numerical difficulties arise here which make the task of fitting 
phase diagrams problematic. In fact, we have to determine a set of disordering energy 
parameters valid for all the temperatures of the two-phase region. The first possible way 
of achieving this is to express these equations simultaneously for several temperatures and 
to use a least-squares procedure. In fact, if we take many two-phase equilibria, the form 
used for AH~isl(c~qu) is too crude and the least-squares procedure is consequently not very 
efficient. Another possibility would be to intmduce 2N parameters for the disordering energy 
with the purpose of reproducing the two-phase equilibria for N temperatures. Obviously, 
this approach is not physically justified and must be rejected. The last solution would be 
to introduce temperature-dependent parameters, but this would be equivalent to considering 
the vibrational entmpy, with a polynomial treatment. We have excluded this approach. 

Table 1. The Ti-AI system resulk (in unik of C = 91.64 meV): see equations (2) and (3) with 
CA =CAI. 

VI V2 au 01 U2 e3 

BCC I 0 -17.27 16.47 -71.42 117.30 
HCP 4 -  -16.67 17.08 -17.08 - 
Liquid - - -9.40 -6.19 - - 

Table 2. 
experimental 1191 and calculated. 

Enlhalpies of formation for Ure liquid phase in lhe TiAl system at 2WO K: 

CAI 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 

Experimenlal value (kJ mol-') -15.06 -18.41 -21.13 -25.94 -29.71 -29.50 -26.78 -24.48 -21.55 
Thwretical value (kJ mol-') -15.02 -18.11 -20.88 -25.15 -27.57 -27.78 -25.44 -23.22 -17.49 

For all these reasons, there is no simple way to fit phase diagrams. We must first estimate 
the 'good' pair interactions and then find the 'good' two-point equilibria, to reproduce the 
most important part of the two-phase region. 

5. Study of the binary systems Ti-AI, Ti-MO, Ti-Nb, Ti-W, AI-MO, AI-Nb, AI-W 

As explained in the introduction, we look for a two-phase regime of the A2fB2 type. We 
have chosen to mix two binary alloys which are ordered (but metastable) on the BCC lattice, 
and one which is segregated. With these requirements, we may hope to observe, for the 
ternary system on the BCC lattice, a two-phase field in stable equilibrium. 

In the present case, it is easy to determine the pair interactions for just the binary alloys 
which segregate (Ti-Mo, Ti-Nb, Ti-W), but not for the alloys which order (Ti-AI, Mc-AI, 
W-AI and Nt-AI). More precisely, for the first set of alloys, the tops of the miscibility 
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1.5 

1.1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Ti AI  

P C  Ti AI 

P C  

2400°C 

2200°C 

2000°C 

1800°C 

16OO'C 

14OO0C 

12OO'C 

1000°C 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Ti AI 

Figure 3. The Ti-AI system: (a) calculate& (6) o b e d  [281: (e)  observed 141. 
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Weight Percent Aluminum 
Temperature 'C Ti AI 

1500 - 

0 10 20 30 40 50 60 70 80 90 100 

Ti AI 

Figure 3. (Continued) 

Table 3. Enthalpies of formation for the solid solution in the E-AI system: experimental [I91 
(at 7 = 60&1010 K) and calculated (at 7 = 0 K). (We used the energy diffeference between FCC 
and HCP AI given in [4] because the heats of formation are measured experimentally from HCP 

Ti and FCC Al.) 

CA' 0.25 0.50 0.75 

Experimental value (U mol-') -25.5 -36.4 -36.6 
Theoretical value (kl mol-') -34.1 -42.3 -31.4 

Table 4. Disordering and ordering energies of the Ti-AI system on the FCC lattice. We compare 
our results with lhose in [U]. 

 AH^^^ (w mol-')  AH^^ (U mol-') 

CM (phase) [231 Present work [U1 Present work 

0.25 (Lid -17.9 -22.3 -14.4 -132 
0.5 (Llo) -27.5 -27.4 -18.0 -17.7 
0.75 (LIZ) -25.2 -22.3 -15.7 -13.2 

Table 5. The results on the Ti-MO system (in units of C = 91.64 meV); see equations (2) and 
(3) wilh CA =a. 

VI V2 ao R I  02 a3 

BCC -0.33 -0.33 2.30 - - -  
HCP -0.33 - 49.10 -46.16 - - 

1.72 0.59 - - Liquid - - 
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Table 6. The Ti-Nb system (in units of C = 91.64 meV); see equalions (2) and (3) with 
CA =ET,. 

VI v2 na a1 a2 a3 
B E  -0.10 -0.10 0.69 - - -  
HCP -0.10 - 40.11 -40.64 - - - -  0.17 - Liquid - - 

Table I. The Ti-w system (in mils of C = 91.4 meV); see equations (2) and (3) with CA = m, 

VI Vz ao 111 4 03 

HCP -0.49 - 618.91 -681.72 - - 
- -  Bcc -0.49 -0.49 3.42 - 

Lquid - - 0.92 3.60 - - 

Ti-Mo 

P C  

observed _ _ _  
-calculated 

2500 

2000 - 

1000 1 

BCC+ HCP 
C 

I I O I I I I ,  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M O  Ti calculated. 
Figure 4. The Ti-MO system: observed and 

gaps occur before the melting point and, for the second set, the binary alloys remain ordered 
up to the melting point 

For the ordered systems, we proceeded as follows: we have chosen to consider first the 
Ti-Ai alloy and to evaluate the pair interactions for the BCC and FCC lattices, as well as for 
the liquid phase, for which they are some thermodynamic estimations of the enthalpies of 
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P C  Ti-Nb 

looo U BCC+HCP 

0 0.1 D.2~ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Nb Ti 

P C  Ti-Nb 

I Liquid 

I5O0 t 
Ti Nb 

Figure 5. The m-Nb system: ( U )  calculated: (b )  observed [MI, 

formation 1191. Then, we have assumed that the value for the pair interactions obtained- 
for the BCC lattice-was approximately the same in the Mc-AI, Nb-AI and W-AI alloys. 
This can be justified by electronic structure considerations. Nevertheless, this constitutes 
an important approximation. 

We preliminarily note that the 
expehental phase diagram given in [28], which was chosen for the fit, has some features 
in common with that calculated by the CVM, with first-neighbour interactions only, in the 
tetrahedron approximation on the FCC lattice. 

In this approximation, the HCP disordered phase a is equivalent to the FCC disordered 
phase 6 ;  the crz (or DOt9) ordered phase is equivalent to LIZ. Then. except for the long- 
period structures around the stoichiometry TiA11, we may consider that the main features 
of the Fcc and HCP parts of the Ti-AI phase diagram will be well reproduced within the 
CVM, by considering only one underlying lattice, namely the F a :  lattice. More precisely, 
if we consider only first-neighbour interactions and a CVM entropy based on the regular 
tetrahedron, as has been done in the past [9-141, the free-energy differences between 
the FCC h d  HCP lattices are, for any concentration and temperature, exceedingly small. 
Consequently, the corksponding phase diagrams are almost indistinguishable [20,21]; the 
HCP phase diagram is similar to the FCC phase diagram and may be obtained by replacing 
the FCC-based LIZ and L10 by the He-based phases Do19 and B19, respectively. Of course, 
this approach is fully justified for a specific system if it can be shown that the ordered Fcc 
compounds and the corresponding HCP compounds have similar enthalpies of formation. 

In recent studies of the Ti-AI system [22-2.51, the enthalpies of formation of FCC and 
He-based ordered compounds have been calculated, using ab initio electronic structure 
methods. such as the full-potential linear muffin-tin orbital and full-potential linearized 
augmented-plane-wave methods. It is found that the HCP-based structure DO19 (Ti3AI) is 

We have first studied the Ti-AI system [4,28]. 
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1500 1 
1000 t;-\1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ' 

1500 I- 

BCCIBCC 

I 1000 0 L?LllL- 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Ti W Ti W 

Figure 6. The Ti-W system: (a )  calculaled: (b)  observed [2-41. 

stable with regard to LIZ only by less than 1 kJ mol-' (the enthalpies are found to be 
-28.7 kl mol-' and -27.8 k.J mol-', respectively). We may them replace the stable DO19 
by the metastable LIZ compound. Additionally, experimental evidence for a metastable Llz 
has  been reported [26].  On the other hand, around the composition TiA13, the FCC-based 
DO22 phase is stable together with long-period superlattice stmctures (LPSs) [271. which can 
be described as consisting of one-dimensionakly conservatively antiphased LIZ unit cells. 

The existence of these LFSS can be understood as being the result of a competition 
between the LIZ and DO22 phases, whose enthalpies of formation should be very close. This 
is confirmed by the ob initio electronic structure calculations 122-241; DO22 is stable with 
regard to LIZ only by 2 kJ mol-' (the enthalpies of formation are found to be -41.9 kJ mol-' 
and -39.6 kJ mol-', respectively). Hence, as the purpose of this paper is to reproduce the 
main features of the Ti-AI phase diagram, we may ignore the wss and replace the D& 
phase by the L11 phase. 

As a result, the ordering effects of the Ti-AI system on the HCP and FCC lattices may be 
reproduced, to a good level of approximation, by considering only the FCC lattice, with a 
CVM entropy based on the regular tetrahedron. The CVM phase diagram with first-neighbour 
interactions is shown in figure 1. 

The CVM calculation leads to a two-phase field Llo-LI2 area namwer than the 
experimental area. Then, in a first step, we have enlarged this regime with an appropriate 
symmetric disordering energy (see figure 2). 

In a second step, we have estimated ( V I ) H C ~ ,  by considering the best fit for all the 
two-phase domains. Finally, we have fitted the parameters for the other structures. The 
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PC 

AI-MO 
P C  

(4 2500 

AI-MO 

Liquid ( b )  

8CC + 
MOlAI 

MO AI MO AI 

Figure 7. The AI-MO system: (a) calculated, ( b )  observed [3-291 

AI-Nb 

pc  ()I 

1000 - 
C 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1 

Nb AI Nb AI 

Figure I?. The AI-Nb system: ( a )  calculated, (b)  observed [3-301. 
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isooI 1000 j7y + WAI, t llquid 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 1 
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I \  1 

B C C t 8  
lSoo CBCA I ' I Bcc'wA'4 R 
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I I , I  I I I I , I J I  I , ,  ' i  
PI 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

W AI 

Figure 9. The AI-W system: ( U )  calculated: (b) observed I31 

at ioao-c 
an the BCClaniie Ti 

A 

AI MO Figure 10. The li-AI-MO system: calculated. 

results are presented in table 1 and figure 3(a). 
We now discuss our results for the Ti-AI system on the FcC lattice. We compare 

enthalpies of formation with experimental data for the liquid and for the solid phase in 
tables 2 and 3. The result is relatively good. Using the values in table I ,  we may compute the 
disordering energies (equation (2)) and ordering energies (equation (3)) of ordered phases, 
We compare our results with those obtained using ab-initio electronic structure calculations 
by Asta er al [23] (table 4). The agreement between the two sets is very good, more 
especially as no information on structural energies has been used to fit the parameters of 
Ti-AI in the solid phases. This gives some confidence in the simplified approach used in 
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I t  100OT 
on the BCC lanice A 

AI Nb Figure 11. The Ti-AI-Nb sysem: calculated 

at 1000-c 
on theBCClani'e 1, 

A 

this paper. 
For all the other systems that we shall consider, the HCP and FCC lattices will be treated 

as for the Ti-AI system, i.e. as equivalent structures. 
We have reponed in figures 4-6 and in tables 5-7 the results of our fits for the Ti-MO, 

Ti-Nb and Ti-W systems, respectively. For these systems, as noted above, we can easily 
determine the pair interactions and also fit the disordering parameters. The calculated pair 
interactions are reasonable and leads to satisfactory phase diagrams. 

For the AI-MO, AI-Nb and AI-W alloys, we used Kaufman's [2,3] work for the 
determination of the parameters of the complex phases treated as stoichiometric compounds 
(see the results in figures 7-9, and in tahles 8-13. Then we fitted the interaction 
and disordering parameters. Although the diagrams are really simplified, the result is 
qualitatively correct. 

We refer the reader to [24,28-301 for all the experimental phase diagrams. The free 
energies of the pure elements that we used for this work are reported in table 14. 
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Table S. The results on the AI-MO system (in units of C = 91.64 meV); see equations (2) and 
(3) with CA =CAI. 

VI Va aa a! 0 2  03 

Liquid - - -5.21 - - -  802 1 0 -9.97 19.7.2 - - 

Table 9. The AI-MO system 131 (in units of C = 91.64 meV). 

Stoichiometric A B 
comoounds (in kT/C) 

MotAi -1.69 -0.33 
MoAi -0.28 -1.41 
Mm.4A10.6 -0.30 -1.45 
Mw.znAIo.7zi -1.88 -0.50 

Table 10. TRe results on the AI-Nb system (in units o fC  = 91.64 meV); see equations (2) and 
(3) with CA = CN. 

BCC 1 0 -6.94 2.41 - 
Liquid - - -23.7 + 8.16kT/C if 7 < 2300 K -6.04 otherwise - - 

Table I!. The system AI-Nb 131 (in mi& of C = 91.64 meV). 

Stoichiometric A B 
compounds (in kT/Q 

Nbo.7sAio.z -5.16 1.24 
Nb11.mAio.ttt -6.33 1.58 
Nh,=Alo .~s  -8.12 2.27 

Table 12. The AI-W sysem (in units of C = 91.64 meV): see equations (2) and (3) with 
CA =CAI. 

VI Vz 00 at a2 a3 

BCC 1 0 -3.19 16.10 - - 
Liquid - - 0.80 - - -  

6. Study of the ternary systems: Ti-AI-MO, Ti-AI-Nb and TMI-W 

We are now able to use these values as input data for the ternary model. We have calculated, 
on the basis of our previous tits, the phase diagrams (isothermal sections) of three ternary 
systems, on the BCC structure: Ti-AI-MO, Ti-AI-Nb and Ti-AI-W. The results, at 1273 K, 
are represented, in figures 1&12, respectively. 

We now discuss them. 

6.1. The 7 i - A l 4 h  alloy 

We do not observe any two-phase field (B2-BCC or B E - B c c )  in this system. This seems 
to have been noticed already experimentally [311. This can be understood easily; the binary 
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Table 13. The AI-W system [31 (in units of C = 91.64 meV). 

Stoichiometric A B 
compounds [in kT/C) 

Wo.iA1o.n -1.18 0.02 

Table 14. Free energies of the pure elements 

9119 

FA( Fn FM, FNb FW 

BCC -628 + 6.694T -16234f 8.368T -24267 + 8.368T -22928 + 8.37T -30543 + 8.2MT 
HCP -5230+9.707T -20585+12.134T -15899+8.3687 -16652t 11.72T -Z175+8,266T 
Liquid 0 0 0 0 0 

Ti-Nb alloy segregates at too low a temperature (less than 400 K according to Murray [4]). 
Thus, at 1273 K, it does not show any two-phase field in the ternary system. 

6.2. The Ti-AI-MO alloy 
We obtain a very instructive result. For the binary Ti-MO, the top of the miscibility gap lies 
at 1043 K. Therefore, at 1273 K, there is no segregation on the Ti-MO line of the ternary 
isotherm. Nevertheless, we note a two-phase field and a segregation in the inner part of 
the isotherm. This can be explained because ordering effects from the other binary alloys 
(Ti-AI and AI-MO) strengthen the segregation tendency. Obviously, to observe such an 
effect, the temperature must be close to the top of the miscibility gap of the Ti-MO system. 

6.3. The Ti-AI-W alloy 

The Ti-W binary system segregates at a higher temperature than the Ti-Mo alloy. 
Consequently, the widths of the two-phase fields in the temary phase diagram will be 
larger at 1273 K. The Ti-W binary system also segregates at this temperature. 

I .  Conclusions 

The calculations that we have developed here may be very fruitful in the future, with a 
view to making some predictions on the nature of multi-component systems. Our approach, 
which goes beyond the regular or subregular models, is also more physical than the Calphad 
approach, but serious difficulties do exist in evaluating the model parameters, as we have 
noted above. 

It might be useful to evaluate them with accurate microscopic quantum studies. The 
linear muffin-tin orbital method [32-341 seems to be a very good candidate for realizing 
such calculations. Utilization of this method will be presented in a forthcoming publication. 
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